УДК 550.385.37

ДИСПЕРСИОННОЕ СООТНОШЕНИЕ ДЛЯ БАЛЛОННЫХ МОД И УСЛОВИЕ ИХ УСТОЙЧИВОСТИ В ОКОЛОЗЕМНОЙ ПЛАЗМЕ

© 2012 г. Н. Г. Мазур¹, Е. Н. Федоров¹, В. А. Пилипенко²

¹ ФГБУ науки Институт физики Земли РАН, г. Москва ² ФГБУ науки Институт космических исследований РАН, г. Москва e-mail: ngmazur@mail. ru Поступила в редакцию 16.11.2010 г.

После доработки 12.01.2012 г.

Баллонные возмущения в плазме конечного давления, находящейся в криволинейном магнитном поле, описываются системой зацепленных уравнений для альвеновской и медленной магнитозву-ковой мод. Наиболее простым и наглядным образом свойства этих возмущений можно характеризовать локальным дисперсионным соотношением, получаемым в приближении ВКБ. Это дисперсионное соотношение широко применяется для предсказания возможных неустойчивостей и спектральных свойств низкочастотных колебаний в ночной магнитосфере. Нами прослежен формальный вывод дисперсионного соотношения из исходной системы зацепленных МГД мод и переход к различным предельным случаям. Детально изучено поведение дисперсионных кривых различных ветвей колебаний, а также возможности для развития неустойчивостей и формирования областей нераспространения волн. Это позволило уточнить результаты предшествующих работ и даже указать на некорректности в некоторых из них. В частности, показано, что быстрая альвеновская ветвь колебаний всегда устойчива, а апериодическая неустойчивость может возникать на медленной магнитозвуковой ветви колебаний.

1. ВВЕДЕНИЕ: БАЛЛОННЫЕ МОДЫ И ИХ УСТОЙЧИВОСТЬ В ОКОЛОЗЕМНОЙ ПЛАЗМЕ

Суббури – ключевое, но так еще и непонятое, явление в околоземном пространстве, сопровождаемое большим выделением энергии, инжекцией и ускорением частиц, активизацией полярных сияний и т.д. При этом ультранизкочастотные (УНЧ) волновые возмущения (периоды от первых секунд до десятков минут) не только осуществляют электродинамическую связь между различными областями околоземного пространства и оказываются дистанционными индикаторами различных фаз суббури, но и могут активно влиять на ее протекание. Ключевая дилемма физики околоземного пространства связана с определением положения области зарождения суббури: в хвосте магнитосферы в результате магнитного пересоединения или на квазидипольных силовых линиях в результате пока не отождествленной неустойчивости? К настоящему времени все большее число исследователей склоняется к мнению, что суббуря начинается на квазидипольных силовых линиях, а пересоединение в хвосте магнитосферы является вторичным процессом. В качестве возможного триггера суббури часто предлагается баллонная (ballooning) неустойчивость [Miura et al., 1989; Ohtani and Tamao, 1993; Liu et al., 1995; Cheng, 2004; Agapitov et al., 2007].

Горячая плазма, давление которой спадает по радиальной координате L слишком резко, а именно как $P \propto L^{-\alpha}$ с показателем $\alpha > 4\gamma$ (γ – показатель политропы), оказывается неустойчивой относительно гидромагнитных желобковых возмущений. Если силовые линии вморожены в проводящие торцы магнитной ловушки, то чисто желобковые возмущения оказываются невозможными, и порог гидромагнитной конвективной неустойчивости повышается за счет дополнительного стабилизирующего слагаемого *α* β⁻¹. Расчеты для дипольной геометрии магнитного поля [Cheremnykh and Parnowski, 2004] дают $\alpha =$ $= K_2 + K_1 \beta^{-1}$, где $K_{1,2}$ – слабо зависящие от широ-ты коэффициенты: $K_2 \simeq 5$, $K_1 \simeq 1$. В отличие от конвективной неустойчивости, баллонная мода представляет собой не перестановочное движение силовой трубки в целом, а локально разбухающий "пузырь" горячей плазмы.

Теоретические работы по баллонной неустойчивости рассматривают систему зацепленных уравнений для полоидальных (мелкомасштабных в азимутальном направлении) альвеновских волн и медленных магнитозвуковых (ММЗ) волн в плазме конечного давления, находящейся в криволинейном магнитном поле. Описание баллонной неустойчивости, проведенное Ohtani and Татао [1993] в ВКБ-приближении, привело к пороговому условию, которое по мнению авторов в типичных условиях ночной магнитосферы не достигается.

В работе [Liu, 1997] указано на ошибку Ohtani and Tamao [1993] в продольной проекции уравнения движения, и получен более мягкий критерий неустойчивости

$$\beta_{\kappa,\kappa_{P}} > k_{\parallel}^{2}, \qquad (1)$$

где $\beta = \beta \mu_2 P B^{-2}$ – отношение газокинетического давления к давлению магнитного поля, к_с – кривизна силовой линии и $\kappa_P = \partial_x \ln P$. Подобное пороговое условие получается для баллонной неустойчивости в мультипольной магнитной ловушке, если под k_{\parallel} подразумевать π/l , где l – размер области с неблагоприятной кривизной [Михайловский, 1978]. Как видно из выражения (1) для порога, благоприятные условия для развития неустойчивости создаются на направленном к Земле резком градиенте давления плазмы $\kappa_P < 0$ в области излома силовых линий (малый радиус кривизны $R_c = |\kappa_c^{-1}|$). Неустойчивая плазма, удерживаемая искривленными силовыми линиями, стремится вырваться наружу и вытянуть силовые линии еще дальше. Характерное время взрывной фазы суббури ~1 мин значительно меньше времени пробега альвеновского возмущения до ионосферы, поэтому в развитии неустойчивости проводящие торцы не должны играть существенной роли.

Такие условия возникают при сильно вытянутых в хвост магнитосферы силовых линиях перед началом взрывной фазы суббури [Zhu et al., 2009]. Другая возможная область для развития баллонной неустойчивости указана в работе [Golovchanskaya and Kullen, 2005]: высокоширотная граница между теплой плазмой плазменного слоя и холодной плазмой долей хвоста. Развитие неустойчивости в этой области может приводить к выбросам горячих филаментов в доли хвоста и образованию трансполярных дуг сияний в полярной шапке.

Получаемое при локальном анализе дисперсионное соотношение широко используется в геофизических приложениях не только для анализа устойчивости плазмы, но и для описания спектральных свойств низкочастотных волновых явлений в ночной авроральной магнитосфере. Дисперсионное соотношение в приближении ВКБ применялось для интерпретации распространения бухт аврорального риометрического поглощения, возможности полного внутреннего отражения альвеновских возмущений [Сафаргалеев и Мальцев, 1986; Mager et al., 2009], колебаний хвоста магнитосферы (flapping waves) [Golovchanskaya and Maltsev, 2005; Golovchanskaya and Mingalev, 2006]. Однако конкретный вид дисперсионного соотношения, использованного в разных работах, различался. В связи с этим было необходимо математически корректно проследить вывод дисперсионного соотношения из исходной системы зацепленных МГД мод и переход к различным предельным случаям, что и сделано в предлагаемой работе. Кроме того, подробно изучена зависимость дисперсионной кривой от параметров плазмы. Это позволяет уточнить теоретические представления о развития суббури с точки зрения внутренней неустойчивости магнитосферной горячей плазмы.

2. МГД РАВНОВЕСИЕ ПЛАЗМЫ В МАГНИТНОМ ПОЛЕ В 2D ГЕОМЕТРИИ

Рассмотрим ситуацию, когда либо горячая плазма удерживается искривленными силовыми линиями, либо внешняя тепловая плазма окружает полость, защищаемую магнитным полем. Пусть *x*, *y*, *z* – декартовы координаты, и **B** = **B**(*x*, *z*) – равновесное магнитное поле с силовыми линиями, лежащими в плоскостях *y* = const. Введем локальный ортонормированный базис, связанный с криволинейной геометрией равновесного магнитного поля: $\mathbf{e}_3 = \mathbf{B}/B$, $\mathbf{e}_2 = \mathbf{e}_y$, $\mathbf{e}_1 = \mathbf{e}_2 \times \mathbf{e}_3$, и введем обозначение для производных по направлениям базисных векторов: $\nabla_n = \mathbf{e}_n \cdot \nabla$. Операторы ∇_1 и ∇_3 коммутируют с ∇_2 , но не коммутируют между собой. Для них имеет место соотношение

$$\nabla_3 \nabla_1 = \nabla_1 \nabla_3 - \kappa_c \nabla_3 + (B^{-1} \nabla_3 B) \nabla_1, \qquad (2)$$

которое будет использовано в дальнейшем. Неоднородности плазмы и магнитного поля характеризуются тремя параметрами: относительными градиентами $\kappa_P = P^{-1} \nabla_1 P$ и $\kappa_B = B^{-1} \nabla_1 B$ и кривизной силовой линии $\kappa_c = \mathbf{e}_1 \cdot \nabla_3 \mathbf{e}_3$ ($|\kappa_c| = R_c^{-1}$).

Условия равновесия плазмы со скалярным давлением P(x) выражаются уравнениями магнитостатики $-\nabla P + \mathbf{J} \times \mathbf{B} = 0$, $\nabla \times \mathbf{B} = \mu_0 \mathbf{J}$, которые в рассматриваемом двумерном случае сводятся к соотношениям

$$\nabla_1 = JB, \ \mu_0 \mathbf{J} = (-\nabla_1 B + \kappa_c B) \mathbf{e}_2. \tag{3}$$

Локальное условие равновесия можно записать и через к-параметры:

$$(\beta/2)\kappa_P + \kappa_B - \kappa_c = 0. \tag{4}$$

3. ЛИНЕАРИЗОВАННЫЕ ДИНАМИЧЕСКИЕ УРАВНЕНИЯ

Пусть в равновесии смещение плазмы и электрическое поле отсутствуют. Тогда для гармоник возмущения $\sim \exp(-i\omega t)$ линеаризованные уравнения МГД имеют вид

$$\mu \partial \omega^2 \pi \xi = \mu_0 \nabla p + \mathbf{b} \times (\nabla \times \mathbf{B}) + \mathbf{B} \times (\nabla \times \mathbf{b}),$$

$$p = -\xi \cdot \nabla P - \gamma P \nabla \cdot \xi, \quad \mathbf{b} = \nabla \times (\xi \times \mathbf{B}), \quad (5)$$

где ρ , P, и **B** – равновесные плотность, давление и магнитное поле, ξ – смещение плазмы из положения равновесия, **b** – возмущение магнитного поля, p – возмущение давления плазмы. Предполагается, что поперечный масштаб возмущений много больше ларморовского радиуса.

Исключая **b** из (5) и переходя вместо ξ_3 и *p* к новым неизвестным: $u = \nabla \cdot \xi$, характеризующей сжатие плазмы, и нормированному возмущению полного давления $q = \mu_0 B^{-2} (p + Bb_3/\mu_0)$, получим линеаризованные МГД уравнения для двумерного случая, которые для возмущений $\propto \exp(ik_2x_2)$ имеют вид

$$(\nabla_{1} - \kappa_{c})\xi_{1} + i\varepsilon^{-1}k_{2}\xi_{2} - k_{3}^{-2}L_{s}u = 0,$$

$$(L_{p} + \beta\kappa_{c}\kappa_{p})\xi_{1} + \gamma\beta\kappa_{c}u + (\beta\kappa_{p} - \nabla_{1})q = 0, \quad (6)$$

$$L_{T}\xi_{2} - i\varepsilon^{-1}k_{2}q = 0,$$

$$2\kappa_{c}k_{s}^{2}\xi_{1} + L_{c}u + k_{s}^{2}q = 0,$$

где $L_P = \nabla_3 B^{-1} \nabla_3 B + k_A^2$ – полоидальный альвеновский оператор, $L_T = B^{-1} \nabla_3 B \nabla_3 + k_A^2$ – тороидальный альвеновский оператор, $L_s = B \nabla_3 B^{-1} \nabla_3 + k_s^2 - k_s^2 + k_s^2 +$ магнитозвуковой оператор, и $L_c = L_s + k_A^2$. Здесь $k_A = \omega/V_A$ – альвеновское волновое число, $k_s =$ $=\omega/V_s$ – магнитозвуковое волновое число, k_c^2 = $=k_{A}^{2}+k_{s}^{2}=\omega^{2}/V_{c}^{2}$ и $\beta=2\gamma^{-}V_{s}^{2}/V_{A}^{2}-$ отношение давлений плазмы и магнитного поля; V_A = $= B(\mu_0 \rho)^{-1/2}$ – альвеновская скорость, V_s = $(\gamma P/\rho)^{1/2}$ – скорость звука, и $V_c = V_A V_s (V_A^2 + V_s^2)^{-1/2}$ – касповая скорость. Этот вид уравнений оказывается удобным для перехода к асимптотике при больших поперечных волновых числах. Система уравнений, полученная в работе [Cheng, 2002], в двумерном случае с точностью до обозначений совпадает с системой (6).

4. АСИМПТОТИКА ПРИ БОЛЬШИХ ПОПЕРЕЧНЫХ ВОЛНОВЫХ ЧИСЛАХ

Исследуем асимптотику решений системы (6) для поперечно-мелкомасштабных возмущений, т.е. при $k_{\perp} = (k_1^2 + k_2^2) \longrightarrow \infty$. Заменим для удобства оценки порядка величин $k_1 \longrightarrow k_1/\varepsilon$ и $k_2 \longrightarrow k_2/\varepsilon$, где ε — малый параметр. Асимптотику решения системы (6) будем искать в виде

$$y = (y_0 + \varepsilon y_1 + \varepsilon^2 y_2 + ...) \exp[i\theta(x_1)\varepsilon^{-1}]$$

(y = \xi_1, \xi_2 u, q), (7)

что отражает большую величину "радиального" волнового числа $\varepsilon^{-1}\nabla_1\theta = \varepsilon^{-1}k_1$. Собирая члены с одинаковыми степенями ε , получим в порядке ε^{-1} систему уравнений

$$k_1\xi_{10} + k_2\xi_{20} = 0, \quad k_1q_0 = 0, \quad k_2q_0 = 0,$$
 (8)

из которой следует, что $q_0 = 0$, то есть возмущение полного давления q является малой величиной < ϵ . По существу, это означает отщепление быстрой магнитозвуковой волны.

Далее, в порядке ε^0 имеем систему уравнений

$$ik_{1}\xi_{11} + ik_{2}\xi_{21} - \kappa_{c}\xi_{10} - k_{s}^{-2}L_{s}u_{0} + \nabla_{1}\xi_{10} = 0,$$

$$(L_{P} + \beta\kappa_{c}\kappa_{P})\xi_{10} + \gamma\beta\kappa_{c}u_{0} +$$

$$+ \beta\kappa_{P}q_{0} - \nabla_{1}q_{0} - ik_{1}q_{1} = 0,$$

$$L_{T}\xi_{20} - ik_{2}q_{1} = 0,$$

$$2\kappa_{c}k_{s}^{2}\xi_{10} + L_{c}u_{0} + k_{s}^{2}q_{0} = 0.$$
(9)

Первое уравнение этой системы может быть использовано при дальнейшем уточнении решения для определения поправок первого приближения. Остальные три уравнения с помощью соотношений (8) приводятся к замкнутой системе уравнений нулевого приближения (опускаем индекс 0)

$$(L_{P} + \beta \kappa_{c} \kappa_{P})\xi_{1} - ik_{1}q_{1} + \gamma \beta \kappa_{c}u_{0} = 0,$$

$$ik_{1}L_{T}\xi_{1} - k_{2}^{2}q_{1} = 0,$$

$$2\kappa_{c}k_{s}^{2}\xi_{1} + L_{c}u = 0.$$
(10)

Величина q_1 относится к нулевому приближению, так как $q_0 = 0$.

Для полоидальных возмущений ($k_1 = 0$) из первого соотношения (8) следует, что $\xi_{20} = 0$, а из второго уравнения системы (10) находим $q_1 = 0$, то есть при $k_1 = 0$ величина $q \leq \varepsilon^2$. Тогда первое и третье уравнения (10) образуют замкнутую систему

$$(L_P + \beta \kappa_c \kappa_P) \xi_1 + \gamma \beta \kappa_c u = 0, \qquad (11)$$
$$2 \kappa_c k_c^2 \xi_1 + L_c u = 0.$$

Для тороидальных возмущений ($k_2 = 0$) из (8) получается, что $\xi_{10} = 0$ и $q_0 = 0$. При этом надо вернуться к системе (9), поскольку при $k_2 = 0$ второе уравнение системы (10) тождественно удовлетворяется. Последние два уравнения системы (9) представляют собой при $k_2 = 0$ расцепленную систему: $L_T \xi_{20} = 0$, $L_c u_0 = 0$. При этом из второго уравнения системы (9) находим $q_1 = -ik_1^{-1}\gamma\beta\kappa_c u_0$,

+

т.е. в этом случае возмущение полного давления является малой величиной $q \sim \varepsilon$.

Заметим, что общая система нулевого приближения (10) не намного сложнее частного случая (11). Неизвестное q_1 легко исключается с помощью второго уравнения системы (10), в результате чего получаем систему второго порядка [Klimushkin, 1998]

$$(L_P + k_1^2 k_1^{-2} L_T + \beta \kappa_c \kappa_P) \xi_1 + \gamma \beta \kappa_c u = 0, \qquad (12)$$
$$2\kappa_c k_s^2 \xi_1 + L_c u = 0.$$

5. ЛОКАЛЬНОЕ ДИСПЕРСИОННОЕ УРАВНЕНИЕ

Пусть возмущение имеет малый масштаб не только по x_1 , x_2 , но и по x_3 , так что и зависимость от координаты x_3 ищем в приближении геометрической оптики $\propto \exp(ik_{\parallel}x_3)$ с $k_{\parallel} \longrightarrow \infty$. Операторы в (12) превращаются в числовые множители: $L_P =$ $= L_T = L_A = k_A^2 - k_{\parallel}^2$, $L_c = k_c^2 - k_{\parallel}^2$, и (12) теперь становится алгебраической системой. Приравнивая ее определитель нулю, получаем дисперсионное уравнение

$$\omega^{4} - \left[\left(V_{A}^{2} + V_{c}^{2} \right) k_{\parallel}^{2} + \kappa_{c} 4 \kappa_{c} V_{c}^{2} - \beta \kappa_{P} V_{A}^{2} \sin^{2} \alpha \right] \times \\ \times \omega^{2} + V_{A}^{2} + V_{c}^{2} k_{\parallel}^{4} - \beta \kappa_{c} \kappa_{P} V_{A}^{2} V_{c}^{2} k_{\parallel}^{2} \sin^{2} \alpha = 0,$$
(13)

где α — угол между \mathbf{k}_{\perp} и ортом \mathbf{e}_1 , то есть $\sin^2 \alpha = k_2^2 (k_1^2 + k_2^2)^{-1}$. Полученное уравнение (13) является обобщением локального дисперсионного соотношения [*Liu*, 1997] для косых возмущений $\sin \alpha \neq 1$. Корни уравнения (13) имеют вид

$$\omega_{\pm}^{2} = \frac{V_{A}^{2}}{2 + \gamma \beta} \times$$

$$+ \gamma \beta k_{\parallel}^{2} + H \pm \sqrt{\left(k_{\parallel}^{2} + H\right)^{2} + 4\gamma^{2}\beta^{2}k_{c}^{2}k_{\parallel}^{2}\sin^{2}\alpha}], \qquad (14)$$

где $H = \beta \kappa_c [2\gamma \kappa_c - \kappa_P (2 + \gamma \beta)/2] \sin^2 \alpha$. Поскольку дискриминант биквадратного уравнения (13) положителен при $k_{\parallel}^2 > 0$, то корни ω_{\pm}^2 вещественны для вещественных k_{\parallel} , как и следовало ожидать в рамках идеальной МГД. Таким образом, ω может быть или вещественным, или чисто мнимым (последний случай соответствует апериодической неустойчивости). Соотношение (14) описывает две ветви: быструю (знак плюс) и медленную (знак минус). При $\beta \rightarrow 0$, $\omega_+ \rightarrow \omega_A$, т.е. быстрая ветвь переходит в альвеновские волны, а $\omega_- \rightarrow 0$. Укажем ряд важных свойств дисперсионного соотношения (14).

Величина ω_{\pm}^2 неотрицательна при вещественном k_{\parallel} и обращается в нуль только при $k_{\parallel} = 0$:

$$\omega_{\pm}^{2} = V_{A}^{2} (2 + \gamma \beta)^{-1} (\gamma \beta k_{\parallel}^{2} + k_{\parallel}^{2} + H + |k_{\parallel}^{2} + H|) \geq$$

$$\geq V_{A}^{2} \gamma \beta k_{\parallel}^{2} (2 + \gamma \beta)^{-1}.$$

Следовательно, быстрая ветвь $\omega_{\pm}^2(k_{\parallel})$ устойчива при любых k_{\parallel} . Встречающиеся иногда утверждения о возможности возбуждения альвеновских волн (т.е. быстрой ветви) в результате развития баллонной неустойчивости [Miura et al., 1989; Ohtani and Татао, 1993] являются некорректными.

Неустойчивой может быть только медленная ветвь. Нижний корень $\omega_{-}^{2}(k_{\parallel})$ отрицателен при условии

$$k_{\parallel}^2 < \beta \kappa_c \kappa_P \sin^2 \alpha. \tag{15}$$

Это неравенство — обобщение условия апериодической неустойчивости (1) [Liu, 1997]. Оно показывает, что для косых возмущений ($k_1 \neq 0$) порог неустойчивости по β или κ_P выше. Нулевая действительная часть частоты означает, что плазма не обладает упругостью по отношению к этим возмущениям.

Из точного выражения (14) при $k_{\parallel} \gg \kappa_c \sin \alpha$ получаются асимптотические формулы для мелкомасштабных в продольном направлении колебаний

$$\omega_{+}^{2} = V_{A}^{2} [k_{\parallel}^{2} + \beta(2\gamma - R)\kappa_{c}^{2}\sin^{2}\alpha - (16) - \gamma^{2}\beta^{2}(2\gamma - R)\kappa_{c}^{2}\sin^{2}\alpha k_{\parallel}^{-2} + O(k_{\parallel}^{-4})],$$

$$\omega_{-}^{2} = V_{c}^{2} [k_{\parallel}^{2} - 2\gamma\beta - R\kappa_{c}^{2}\sin^{2}\alpha + (17) + \gamma\beta^{2}(2 + \gamma\beta)(2\gamma - R)\kappa_{c}^{4}\sin^{4}\alpha k_{\parallel}^{-2} + O(k_{\parallel}^{-4})].$$

Здесь введен параметр $R = \kappa_p/\kappa_c$; по абсолютной величине $|R| = R_c/a$ – отношение радиуса кривизны к масштабу неоднородности плазмы $a = |\kappa_p|^{-1}$. Только в рассматриваемом предельном случае дисперсионное соотношение (14) для быстрой ветви имеет вид линейной функции от V_A^2 : $\omega_+^2 = V_{\parallel}^2 k_A^2 + \omega_g^2$, который часто используется в геофизических приложениях.

Рассмотрим случай горячей плазмы $\beta \longrightarrow \infty$. В силу условия равновесия (4) величина κ_P обратно пропорциональна β : $\beta \kappa_P = 2(\kappa_c - \kappa_B)$. С учетом этого при $\beta \ge 1$ имеем

$$H \approx \beta \kappa_c (2\gamma \kappa_c - \gamma \beta \kappa_P/2) \sin^2 \alpha = \gamma \beta \kappa_c (\kappa_c + \kappa_B) \sin^2 \alpha,$$

и дисперсионное соотношение (14) в пределе $\beta \longrightarrow \infty$ переходит в соотношение, полученное в работах [*Liu*, 1997] (для sin² $\alpha = 1$) и [Golovchanskaya and Mingalev, 2006]

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 52 № 5 2012

×[(1

$$\omega_{+}^{2} = V_{A}^{2} \left[k_{\parallel}^{2} + \kappa_{c}^{2} (\kappa_{c} + \kappa_{B}) \sin^{2} \alpha \pm \sqrt{\kappa_{c}^{2} (\kappa_{c} + \kappa_{B})^{2} \sin^{2} \alpha + 4k_{\parallel}^{2} \kappa_{c}^{2} \sin^{2} \alpha} \right]$$

которое справедливо при условии $k_{\parallel} \ll \gamma \beta \kappa_c \sin \alpha$.

6. ГЕОМЕТРИЧЕСКИЕ СВОЙСТВА ДИСПЕРСИОННОЙ КРИВОЙ

Дисперсионная кривая (14) представляет собой гиперболу в плоскости k_{\parallel}^2 , ω^2 , положение и форма которой зависят от параметров *R* и β и от угла α . Левая часть дисперсионного уравнения (13) представляет собой однородный полином 4-й степени относительно переменных ω , k_{\parallel} и sin α . Поэтому зависимость соотношения (14) от параметра sin α очень проста: график при sin² α < 1 получается из графика ω_{\pm}^2 (k_{\parallel}) при sin² α = 1 растяжением обеих осей в (sin α)⁻¹ раз.

Введем безразмерные волновое число $\kappa_{\parallel} = k_{\parallel}(\kappa_c \sin \alpha)^{-1}$ и частоту $\Omega = \omega(\kappa_c V_A \sin \alpha)^{-1}$. Тогда соотношение (14) будет зависеть реально только от двух параметров β и $R = \kappa_P/\kappa_c$:

$$\Omega_{\pm}^{2} = (2 + \gamma\beta)^{-1} \times \\ \times [(1 + \gamma\beta)\kappa_{\parallel}^{2} + h \pm \sqrt{(k_{\parallel}^{2} + h)^{2} + 4\gamma^{2}\beta^{2}\kappa k_{\parallel}^{2}}], \qquad (18)$$

где нормированная величина $h = H/\kappa_c^2 = \beta(2\gamma - R - \gamma\beta R/2)$. Представим (18) в виде, явно содержащем координаты центра гиперболы κ_0^2 , Ω_0^2 .

$$\Omega_{\pm}^{2} = \Omega_{0}^{2} + (2 + \gamma \beta)^{-1} \times$$

$$\times [(1 + \gamma \beta)(\kappa_{\parallel}^{2} - \kappa_{0}^{2}) \pm \sqrt{(\kappa_{\parallel}^{2} - \kappa_{0}^{2})^{2} + M}],$$
(19)

где $\kappa_0^2 = -\gamma^2 \beta^2 + \beta (1 + \gamma \beta/2) (R - 2\gamma), \ \Omega_0^2 = (\gamma \beta \kappa_0^2 - 2\gamma^2 \beta^2) (2 + \gamma \beta)^{-1} = \gamma \beta^2 (R - 4\gamma)/2, \ и M = \min D(k_{\parallel}^2) = 2\gamma^2 \beta^3 (2 + \gamma \beta) (R - 2\gamma).$ Асимптотами гиперболы (19) при $\kappa_{\parallel} \longrightarrow \infty$ служат прямые

$$Ω2 = κ||2 - β(R - 2γ) μ$$

$$Ω2 = γβ(2 + γβ)-1(κ||2 - 2γβ),$$
(20)

пересекающиеся в точке (κ_0^2 , Ω_0^2). Наклонам этих прямых с учетом принятой нормировки частоты и волнового числа отвечают квадраты альвеновской и касповой скорости. Правые части соотношений (20), разумеется, совпадают с двумя первыми членами разложений (16) и (17).

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 52 № 5 2012

При $R = 2\gamma$ первая из асимптот (20) проходит через начало координат. Значение параметра $R = 2\gamma$ является критическим: гипербола (19) вырождается в пару пересекающихся прямых (20). При $R < 2\gamma$, когда M < 0, гипербола (19) располагается внутри острых углов между асимптотами и

имеет точки ветвления — нули функции $D(\kappa_{\parallel}^2)$:

$$\kappa_{\parallel}^2 = \kappa_0^2 \pm \sqrt{-M}.$$
 (21)

В области $R > 2\gamma$, когда M > 0 и $D(\kappa_{\parallel}^2) > 0$ на всей оси κ_{\parallel}^2 , гипербола (19) переходит в тупые углы между асимптотами и точки ветвления исчезают (становятся мнимыми).

Важным свойством дисперсионной кривой (13) является то, что она всегда проходит через начало координат в плоскости κ_{\parallel}^2 , ω^2 . Полагая $\kappa_{\parallel}^2 = 0$ в (18), найдем

$$\Omega_{\pm}^{2}(0) = (h \pm |h|)(2 + \gamma \beta)^{-1}, \qquad (22)$$

то есть при $h \ge 0$ через начало координат проходит нижняя ветвь, а при $h \le 0$ начало координат оказывается уже на верхней ветви. Переход с ветви на ветвь происходит при h = 0, то есть при $R = 4\gamma(2 + \gamma\beta)^{-1}$ – это значение параметра R находится в промежутке между 0 и 2 γ . При $R < 2\gamma$ через начало координат проходит та часть гиперболы, которая располагается справа от центра, а при $R > 2\gamma$ через начало координат проходит верхняя часть гиперболы.

Для оценки максимального инкремента неустойчивости волн представляет интерес положение в плоскости κ_{\parallel}^2 , Ω^2 точки минимума функции Ω_{-}^2 (κ_{\parallel}^2) и точки ветвления ($\overline{\kappa_{\parallel}^2}$, $\overline{\Omega}^2$), в которой ветви Ω_{+}^2 (κ_{\parallel}^2) и Ω_{\pm}^2 ($\overline{\kappa_{\parallel}^2}$) соединяются: Ω_{\pm}^2 ($\overline{\kappa_{\parallel}^2}$) = $= \overline{\Omega}^2$. Очевидно, эти точки существуют только при $R < 2\gamma$. Минимум функции Ω_{-}^2 (κ_{\parallel}^2) равен

$$\min\Omega^2 = \gamma^2 \beta^2 (\lambda - 1)^2$$
 (23)

и достигается при $\kappa_{\parallel}^2 = \kappa_{\min}^2 = -\gamma\beta(2+\gamma\beta)(\lambda-1) \times (\lambda - u_c)$, где $\lambda = (1 - R/2\gamma)^{1/2}$ и $u_c = \gamma\beta(2+\gamma\beta)^{-1} = V_c^2/V_A^2$. Величина min Ω^2 обращается в нуль при R = 0, а для всех других значений R она отрицательна. Точка κ_{\min}^2 по мере роста R сначала движется вправо, проходя через нуль при R = 0, достигает крайне правого положения $\kappa_{\parallel}^2 = \max_{\lambda} \kappa_{\min}^2(\lambda) = u_c$ при $R = 2\gamma[1 - (1 + u_c)^2/4]$, после чего движется об-

ратно, проходя через нуль при $R = 2\gamma(1 - u_c^2)$, и приходит в точку $\kappa_{\parallel}^2 = -\gamma^2 \beta^2$ при $R = 2\gamma - в$ момент вырождения гиперболы в пару прямых.

Правая точка ветвления определяется формулой (21) со знаком +, которая имеет координаты

$$κ||2 = -s2, Ω2 = -uc(2s + s2)$$

(s = γβ - [β(2 + γβ)(γ - R/2)]^{1/2}).
(24)

Точка ветвления ($\overline{\kappa_{\parallel}^2}$, $\overline{\Omega^2}$) с ростом *R* вначале смещается вправо, но это происходит лишь пока *R* < $< 4\gamma(2 + \gamma\beta)^{-1}$. При $R = 4\gamma(2 + \gamma\beta)^{-1}$ точка ветвления достигает своего крайне правого положения, совпав при этом с началом координат. При дальнейшем росте *R* точка ветвления идет влево, и начало координат оказывается уже на верхней ветви Ω_+^2 (κ_{\parallel}^2). В конце концов, при $R \longrightarrow 2\gamma$ точка ветвления исчезает в точке пересечения асимптот ($-\gamma^2\beta^2$, $-\gamma^2\beta^2$).

7. ЗАВИСИМОСТЬ ДИСПЕРСИОННОЙ КРИВОЙ В ПЛОСКОСТИ κ_{\parallel}^2 , ω^2 |от параметра *R*

Проследим последовательно за движением гиперболы (19) при изменении параметра R, отмечая те значения, при которых происходят ее качественные изменения, важные с точки зрения дисперсионных свойств системы. На рисунке 1 представлено семейство гипербол (19) для $\beta = 1$ при изменении параметра R в области $R \le 2\gamma$. При расчетах для всех рисунков принято, что колебания плазмы адиабатические, т.е. показатель $\gamma = 5/3$.

При R < 0 гипербола (19) проходит через начало координат своей нижней ветвью $\Omega_{-}^{2}(\kappa_{\parallel}^{2})$; наклон ее в этой точке положителен, так как $\kappa_{\min}^{2} < 0$. С ростом κ_{\parallel}^{2} наклон выпуклой кривой $\Omega_{-}^{2}(\kappa_{\parallel}^{2})$ только возрастает, поэтому и вся ветвь $\Omega_{-}^{2}(\kappa_{\parallel}^{2}) > 0$ для $\kappa_{\parallel}^{2} > 0$. Таким образом, при R < 0 ветвь $\Omega_{-}^{2}(\kappa_{\parallel}^{2})$ устойчива. Тем более устойчива альвеновская ветвь $\Omega_{+}^{2}(\kappa_{\parallel}^{2}) > \Omega_{-}^{2}(\kappa_{\parallel}^{2}) > 0$.

Отметим, что при Ω^2 в промежутке $0 < \Omega^2 < \Omega_+^2$ мы имеем $\Omega^2 < 0$ — на частотах ниже Ω_+ волны альвеновского типа не распространяются. Величина квадрата нормированной частоты отсечки, согласно (22), определяется формулой

$$\Omega_*^2 = \Omega_+^2(0) = 2h(2+\gamma\beta)^{-1} =$$

= $\beta[4\gamma((2+\gamma\beta)^{-1}-R)],$ (25)

справедливой при $R < 4\gamma(2 + \gamma\beta)^{-1}$, то есть пока $\Omega^2_+(0) > 0$. При R = 0 гипербола (19) касается оси κ_{\parallel}^2 в начале координат, а при дальнейшем росте Rминимум функции $\Omega^2_-(\kappa_{\parallel}^2)$ смещается на положительную полуось, и здесь возникает интервал $0 < \kappa_{\parallel}^2 < \beta R$, в котором $\Omega^2_-(\kappa_{\parallel}^2) < 0$, то есть медленная ветвь оказывается неустойчивой. Минимум функции $\Omega^2_-(\kappa_{\parallel}^2)$, отвечающий максимуму инкремента неустойчивости, определяется формулой (23).

По достижении параметром *R* значения $R = 4\gamma(2 + \gamma\beta)^{-1} = 2\gamma(1 - u_c)$ гипербола (19) оказывается целиком в правой полуплоскости, касаясь оси Ω^2 в начале координат. В этот момент область непрозрачности исчезает; начало координат переходит на верхнюю ветвь. При $R > 2\gamma(1 - u_c^2)$ точ-ка минимума κ_{\min}^2 опять уходит на отрицательную полуось $\kappa_{\parallel}^2 < 0$, то есть максимум инкремента неустойчивости закрепляется при $\kappa_{\parallel}^2 = 0$. Квадрат этого максимума определяется, согласно (22), выражением $\mu^2 = -\Omega_-^2 = -2h(2 + \gamma\beta)^{-1} = \beta[R - 4\gamma(2 + \gamma\beta)^{-1}]$. По мере приближения *R* к критическому значению 2γ гипербола (19) "заостряется" и при $R = 2\gamma$ вырождается в пару прямых (20). После этого при $R > 2\gamma$ дисперсионная кривая (19) состоит из не связанных между собой ветвей, которые расположены сверху и снизу от асимптот (20).

В продольно-однородном магнитном поле с силовыми линиями постоянной кривизны $r = R_c = -\kappa_c^{-1}$ = const условие гидромагнитной устойчивости плазмы [Кадомцев, 1963] имеет вид $r\partial \ln P/\partial r + 2\gamma > 0$, то есть $-\kappa_P/\kappa_c + 2\gamma > 0$. Таким образом, важная роль значения параметра $R \equiv \kappa_P/\kappa_c = 2\gamma$ в поведении дисперсионных кривых может быть связана с переходом через порог гидромагнитной устойчивости. Поэтому значения $R > 2\gamma$ могут не иметь смысла, так как они соответствуют гидромагнитно-неустойчивой плазме, и в дальнейшем этот случай подробно рассматриваться не будет.

8. ЗАВИСИМОСТЬ ВЕТВЕЙ Ω_{\pm}^2 (κ_{\parallel}) ОТ ПАРАМЕТРА β

Теперь опишем поведение дисперсионной кривой при изменении величины *P* по отношению к давлению магнитного поля при действительных κ_{\parallel} . Поведение дисперсионной кривой при изменении β качественно определяется асимптотиками (20) и движением точки кривой на оси ординат $\Omega^2 = \Omega_{\pm}^2$ (начало кривой). Значе-

Рис. 1. Поведение ветвей $\Omega_{+}^{2}(\kappa_{\parallel})$ (сплошная линия) и $\Omega_{-}^{2}(\kappa_{\parallel})$ (штриховая линия) в плоскости k_{\parallel}^{2} , ω^{2} в зависимости от параметра $R = \kappa_{P}/\kappa_{c}$ при $\beta = 1$ (значения R проставлены около кривых). Область $k_{\parallel}^{2} < 0$ соответствует области нераспространения (непрозрачности) для быстрой (альвеновской) ветви колебаний.

ние $\Omega_{\pm}^2(0)$, согласно (22), очень просто выражается через величину *h*, зависимость которой от β удобно теперь представить в виде $h = \gamma \beta R (\beta_0 - \beta)/2$, где $\beta_0 = 4/R - 2/\gamma$. Из (22) следует, что при h < 0 значение $\Omega_{\pm}^2 \equiv 0$, а $\Omega_{-}^2(0)$ пропорционально *h*, и при h = 0 обе величины $\Omega_{\pm}^2(0) = 0$. При переходе в область h > 0, наоборот, $\Omega_{\pm}^2(0) = 0$.

Пусть R < 0 (κ_P и κ_c разных знаков); тогда $\beta_0 < 0$, так что $h(\beta)$ монотонно возрастает от нуля при $\beta =$ = 0. Пример для случая R < 0 показан на рис. 2*a*. Начало быстрой ветви поднимается с ростом β вверх по положительной полуоси, а медленная ветвь при любом β выходит из начала координат. Обе ветви Ω_{\pm}^2 (κ_{\parallel}) устойчивы и монотонно возрастают с ростом κ_{\parallel} . В области положительных R (знаки κ_P и κ_c совпадают) поведение ветвей меняется при переходе через значение $R = 2\gamma$, при котором $\beta_0 = 4/R - 2/\gamma$ меняет знак. Для R в промежутке $0 < R < 2\gamma$ функция $h(\beta)$ немонотонна и меняет знак при переходе через $\beta = \beta_0$ – поэтому поведение ветвей в зависимости от β выглядит несколько сложнее. Начало быстрой ветви при возрастании β поднимается от начала координат до максимума при

$$eta=2\gamma^{-1}(\sqrt{2\gamma^{-1}/R}\ -1),$$
 равного $\max_{eta}\Omega_+^2$ ($\kappa_{\parallel}=0)=$

= $4(1 - \sqrt{R/2\gamma})^2$, а затем опять опускается в начало координат, где и остается при $\beta \ge \beta_0$. Начало нижней ветви, наоборот, при $\beta \le \beta_0$ совпадает с началом координат, а при $\beta > \beta_0$ начинает опускаться вниз. Медленная ветвь имеет область значений κ_{\parallel} , где $\Omega_{-}^2 < 0$, то есть эта мода неустойчива. Эта область – промежуток $\kappa_{\parallel}^2 < \beta R$, что соответ-

Puc. 2. Поведение ветвей Ω_{+}^{2} (κ_{\parallel}) (сплошная линия) и Ω_{-}^{2} (κ_{\parallel}) (штриховая линия) в зависимости от параметра β: (*a*) при R = -1 (устойчивая плазма); (*b*) при положительном R = 1. Значения β проставлены около кривых. В случае R = 1 при $\beta = 0.991$ достигается максимум частоты отсечки $\Omega_{+}(0)$. В области, где $\Omega_{-}(\kappa_{\parallel}) < 0$, медленная ветвь неустойчива.

ствует (15). Пример из области 0 < *R* < 2 γ показан на рис. 2*б*.

Наконец, в случае $R > 2\gamma$ (не показан на рисунке) функция $h(\beta)$ опять становится проще — она монотонно убывает. Начало быстрой ветви фиксировано в начале координат, да и вся ветвь мало меняется при изменении β . Наоборот, начало нижней ветви быстро уходит вниз по отрицательной полуоси, и область неустойчивости быстро расширяется.

9. О ВОЗМОЖНОСТИ ПОЛНОГО ВНУТРЕННЕГО ОТРАЖЕНИЯ ПОЛОИДАЛЬНЫХ АЛЬВЕНОВСКИХ ВОЛН

Анализ дисперсионного уравнения (14) в плоскости κ_{\parallel}^2 , ω^2 показывает, что при вещественных ω возможно появление областей, где $\kappa_{\parallel}^2 < 0$ (кривые на рис. 1 для $R < 2\gamma(1 - u_c) = 1.818$). Эти области непрозрачны для альвеновских волн. Расположение таких областей на силовой линии оценивалось в работе [Mager et al., 2009]. При этом в качестве дисперсионного уравнения использовалась асимптотика (16) при sin² $\alpha = 1$, которую можно

представить в виде $\kappa_{\parallel}^2(s) = [\omega^2 - \omega_g^2(s)] V_A^2$, где *s* – координата вдоль силовой линии, и

$$\omega_g^2 = V_A^2 \beta \kappa_c (2\gamma \kappa_c - \kappa_P) = 2P \rho^{-1} \kappa_c (2\gamma \kappa_c - \kappa_P).$$
(26)

Если в (26) слагаемое $2\gamma \kappa_c$ доминирует над κ_p , то это приводит с учетом постоянства давления вдоль силовой линии к оценке $\omega_g^2(s) \propto \kappa_c^2(s)\rho(s)^{-1}$. Поскольку кривизна силовой линии $\kappa_c(s)$ в направлении к экватору возрастает, а плотность $\rho(s)$ при этом убывает, то в приэкваториальной области может возникнуть область непрозрачности для альвеновских волн, разделяющая силовую линию на два независимых альвеновских резонатора, примыкающие к ионосферам. Это произойдет, если достигаемый на экваторе $\max \omega_g^2 > \omega^2$. Таким образом, приэкваториальная область с большими β и κ_c может нарушать сопряженность колебаний в разных полушариях.

Отметим, что аналогичная оценка в работе [Сафаргалеев и Мальцев, 1986] привела к прямо противоположному выводу — в экваториальной части силовой линии должна находиться область прозрачности. Однако этот вывод следует признать ошибочным, так как этими авторами был

опущен множитель β в (26), растущий вдоль силовой линии при удалении от Земли.

ОБСУЖДЕНИЕ: СОПОСТАВЛЕНИЕ С СООТНОШЕНИЯМИ ИЗ ПРЕДШЕСТВУЮЩИХ РАБОТ

Описание баллонной неустойчивости, проведенное [Ohtani and Tamao, 1993] в приближении ВКБ ($\propto \exp(ik_yy + ik_{\parallel}s)$) при пренебрежении радиальной структурой возмущения ($k_n \rightarrow 0$) привело к пороговому условию $\kappa_c(\kappa_P - \kappa_c - \kappa_B) > k_{\parallel}^2 (1 + \beta^{-1})$. Однако, в этой статье уравнение (13) (для частного случая sin² $\alpha = 1$, $\gamma = 1$) приведено с ошибкой: отсутствует последнее слагаемое в левой части. Ошибка возникла из-за неточно выписанной проекции на \mathbf{e}_3 слагаемого $\mathbf{b} \times (\nabla \times \mathbf{B})$ в первом уравнении (5) [Liu, 1997]. Отсутствие указанного слагаемого радикально меняет оценку знаков корней уравнения (13), т.е. анализ устойчивости. Коэффициент при ω^2 в (13) убывает с ростом κ_{\parallel}^2 , обращаясь в нуль при (полагаем здесь sin² $\alpha = 1$)

$$k_{\parallel}^{2} = k_{0}^{2} = \kappa_{c} (\beta \kappa_{P} V_{A}^{2} - 4 \kappa_{c} V_{c}^{2}) (V_{A}^{2} + V_{c}^{2})^{-1} =$$

= $\beta \kappa_{c} \kappa_{P} \gamma (1 + \gamma \beta)^{-1} (1/\gamma + \beta/2 - 2\kappa_{c}/\kappa_{P}),$ (27)

т.е. при $k_{\parallel}^2 < k_0^2$ этот коэффициент положителен, и сумма корней уравнения (13) отрицательна. В статье [Ohtani and Tamao, 1993] свободный член уравнения (13) положителен, т.е. оба его корня ω_{\pm}^2 имеют одинаковый знак, и при $k_{\parallel}^2 < k_0^2$ оба корня оказываются отрицательными, что привело этих авторов к неверному выводу о неустойчивости обеих ветвей. На самом деле свободный член в (13) становится при $k_{\parallel}^2 < \beta \kappa_c \kappa_P$ отрицательным, то есть при этом условии $\omega_{-}^2 < 0$, а $\omega_{+}^2 > 0$. В области же $k_{\parallel}^2 < \beta \kappa_c \kappa_P$ и сумма, и произведение корней положительны, т.е. $\omega_{+}^2 > 0$ – обе ветви устойчивы.

В работе [Міига et al., 1989] в приближении ВКБ по поперечным координатам получена система зацепленных дифференциальных по продольной координате уравнений для связанных альвеновской и медленной магнитозвуковой мод. Однако авторы не решают полученную систему в общем виде, а пытаются выделить альвеновскую моду. Для этого они полагают $\delta v_{\parallel} \rightarrow 0$, что должно, по их мнению, исключить MM3 моду. Из полученного ими локального дисперсионного уравнения получается условие неустойчивости альвеновских (!) колебаний. Противоречие между выводом [Міига et al., 1989] и данной работой связано со следующим обстоятельством. Если в полоидальной системе (11) положить u = 0, то в силу соотношения (ПЗ), это эквивалентно предположению $\xi_{\parallel} = 0$, то есть $\delta v_{\parallel} = 0$. Тогда первое уравнение системы (11) действительно превращается в уравнение [Miura et al., 1989], для которого локальное дисперсионное соотношение имеет вид

$$\omega^{2} = V_{A}^{2}(k_{\parallel}^{2} - \beta \kappa_{c} \kappa_{P}), \qquad (28)$$

откуда формально следует возможность неустойчивости альвеновской ветви при условии (1). Однако предположение u = 0 оказывается несогласованным со вторым уравнением (11), так как при этом из этого уравнения получается лишь тривиальное решение $\xi_1 = 0$. Анализ же точного дисперсионного соотношения (13) в полоидальном пределе $k_i = 0$, показывает, что никакая ветвь $\omega^2(k_{\parallel}^2)$ не может пересекать линию $\omega^2 = V_c^2 k_{\parallel}^2$, а соотношение (28) противоречит этому условию. Таким образом, альвеновская ветвь ω_+^2 находится выше линии $\omega^2 = V_c^2 k_{\parallel}^2$ при любом k_{\parallel}^2 . Поэтому альвеновская ветвь всегда устойчива: $\omega_+^2 \ge 0$, и вывод о возможной неустойчивости этой ветви является принципиально ошибочным.

В литературе встречается и ряд более мелких погрешностей. В обзоре [Golovchanskaya and Kullen, 2005] приведено дисперсионное соотношение для ω_+^2 (уравнение (2)), сопоставление которого с асимптотикой (16) показывает, что оно корректно только в пределе $\beta \rightarrow 0$. В более ранней работе [Сафаргалеев и Мальцев, 1986] было выведено аналогичное дисперсионное соотношение, относящееся к коротковолновому пределу $k_{\parallel} \rightarrow \infty$. Однако оно не применимо даже при малых β , так как отличается вдвое меньшим коэффициентом при к_с.

В данной работе мы ограничились идеальной МГД и при этом пренебрегли дрейфовыми членами $|\omega| \ge |\omega^*|$. Дрейфовые эффекты могут приводить к некоторому понижению порога конвективной неустойчивости [Похотелов и др., 1980].

Оцененные критерии неустойчивости имеют качественный характер из-за использования ВКБ-приближения в продольном направлении при выводе соответствующих дисперсионных уравнений. В экваториальном плазменном слое магнитосферы на предварительной фазе суббури кривизна становится настолько велика, что применимость приближения ВКБ становится проблематичной. Тем не менее, условие неустойчивости (15) согласуется при $\beta R > 1$ с требованием $k_{\parallel}^2 > k_c^2$. В то же время, последнее условие является слишком жестким, и по-видимому следует го-

ворить о медленном изменении кривизны по сравнению с длиной волны.

11. ЗАКЛЮЧЕНИЕ

Получено дисперсионное уравнение из исходной системы для зацепленных МГД мод в асимптотическом случае мелкомасштабных возмущений, что позволило уточнить соотношения, полученные в предшествующих работах. В отличие от выводов ряда авторов показано, что быстрая зацепленная ветвь колебаний (альвеновского типа) оказывается всегда устойчивой. В областях с резким спаданием по радиусу давления горячей плазмы, удерживаемой сильно искривленными магнитными силовыми линиями, возможна неустойчивость медленной (ММЗ типа) ветви колебаний. В то же время при частотах альвеновских волн ниже частоты отсечки (25) возникает область непрозрачности, и распространение полоидальных альвеновских волн вдоль всей силовой линии становится невозможным.

Выражаем признательность рецензенту за конкретные деловые замечания. Работа выполнена при поддержке РФФИ грант № 11-02-90491 и Программы фундаментальных исследований № 7 ОНЗ РАН.

Приложение: Связь продольного смещения и сжатия плазмы

Проекции первого и третьего уравнений (5) соответственно на \mathbf{e}_3 и \mathbf{e}_1 имеют вид $\nabla_3 p = \omega^2 \rho \xi_3 - J b_1$ и $b_1 = \nabla_3 (B\xi_1)$, откуда находим

$$\nabla_3 p = \omega^2 \rho \xi_3 - J \nabla_3 (B \xi_1). \tag{\Pi1}$$

С другой стороны, второе уравнение (5) можно представить, учитывая условие равновесия (3), в виде $p = -\gamma P u - \nabla_1 P \xi_1 = -\gamma P u - J B \xi_1$, откуда, применяя оператор ∇_3 , получаем

$$\nabla_3 p = -\gamma P \nabla_3 u - J \nabla_3 (B\xi_1) - (B \nabla_3 J) \xi_1. \qquad (\Pi 2)$$

Важным свойством тока J является постоянство его величины вдоль силовых линий, в чем можно убедиться, воспользовавшись коммутационным соотношением (2) и условиями равновесия (3). Поэтому в правой части (П2) последний член реально отсутствует, так что из уравнений (П1) и (П2) сразу получается соотношение

$$\xi_3 = -k_s^{-2} \nabla_3 u. \tag{\Pi3}$$

СПИСОК ЛИТЕРАТУРЫ

 Кадомцев Б.Б. Гидромагнитная устойчивость плазмы // Вопросы теории плазмы. Т. 2. С. 132–176. М.: Госатомиздат, 1963.

- Михайловский А.Б. Неустойчивости плазмы в магнитных ловушках. М.: Атомиздат, 296 с. 1978.
- Похотелов О.А., Булошников А.М., Пилипенко В.А. Гидромагнитная устойчивость внешней границы захваченной радиации // Геомагнетизм аэрономия. Т. 20. С. 419–424. 1980.
- Сафаргалеев В.В., Мальцев Ю.П. Внутренние гравитационные волны в плазменном слое // Геомагнетизм аэрономия. Т. 26. С. 220–223. 1986.
- Agapitov A.V., Cheremnykh O.K., Parnowski A.S. Ballooning perturbations in the inner magnetosphere of the Earth: spectrum, stability and eigenmode analysis // Adv. Space Res. V. 41. P. 1682–1690. 2007.
- Cheremnykh O.K., Parnowski A.S. The theory of ballooning perturbations in the inner magnetosphere of the Earth // Adv. Space Res. V. 33. P. 769–773. 2004.
- Cheng C.Z. MHD field line resonances and global modes in three-dimensional magnetic fields // J. Geophys. Res. V. 107. doi:10.1029/2002JA009470. 2002.
- Golovchanskaya I.V., Kullen A. Ballooning-type instabilities and waves in the Earth's magnetosphere (review) // Proc. of 28-th Annual Seminar. Apatity. P. 93–99. 2005.
- Golovchanskaya I.V., Maltsev Yu.P. On the identification of plasma sheet flapping waves observed by Cluster // Geophys. Res. Lett. V. 32. L02102, doi:10.1029/2004GL021552. 2005.
- Golovchanskaya I.V., Mingalev O.V. Propagation of the ballooning waves in the Earth's magnetotail // Proc. of 29-th Annual Seminar. Apatity. P. 126–132. 2006.
- Klimushkin D. Yu. Theory of azimuthally small-scale hydromagnetic waves in the axisymmetric magnetosphere with finite plasma pressure // Ann. Geophys. V. 16. P. 303–321. 1998.
- Liu W.W., Xu B.-L., Samson J.C., Rostoker G. Theory and observations of auroral substorms: A magnetohydrodynamic approach // J. Geophys. Res. V. 100. P. 79–95. 1995.
- Liu W.W. Physics of the explosive growth phase: Ballooning instability revisited // J. Geophys. Res. V. 102. P. 4927–4931. 1997.
- Mager P.N., Klimushkin D.Yu., Pilipenko V.A., Schäfer S. Field-aligned structure of poloidal Alfvén waves in a finite pressure plasma // Ann. Geophys. V. 27. P. 3875– 3882. 2009.
- Miura A., Ohtani S., Tamao T. Ballooning instability and structure of diamagnetic waves in a model magnetosphere // J. Geophys. Res. V. 94. P. 15231–15242. 1989.
- Ohtani S., Tamao T. Does the ballooning instability trigger substorms in the near-Earth magnetotail? // J. Geophys. Res. V. 98. P. 19369–19379. 1993.
- Zhu P., Raeder J., Germaschewski K., Hegna C.C. Initiation of ballooning instability in the near-Earth plasma sheet prior to the 23 March 2007 THEMIS substorm expansion onset // Ann. Geophys. V. 27. P. 1129–1138. 2009.