ВЕЙВЛЕТ-АНАЛИЗ СОЛНЕЧНОЙ АКТИВНОСТИ ЗА 300 ЛЕТ

В.В.Витязев

НИАИ им. В.В. Соболева, СПбГУ, С.Петербург

РЕЗЮМЕ

С помощью вейвлет-преобразования произведен анализ среднегодовых чисел Вольфа. Использованы данные наблюдений с 1700 по 1999 г. Вейвлеты позволяют получить картину эволюции спектра мощности (скалограммы) во времени. Основной 11-летний цикл представлен на скалограмме в виде синусоподобной детали, амплитуда и период которой меняется во времени. Наиболее резкое изменение периода происходило в 1800-1830 гг. Вейвлетанализ различных реализаций авторегрессионой модели второго порядка чисел Вольфа, показал, что эта модель описывает солнечную активность с гораздо большим числом случайных колебаний по сравнению с тем, что содержит реальный ряд.

1 ВВЕДЕНИЕ

Ряд чисел Вольфа – это знаменитый временной ряд, играющий ключевую роль в проблеме солнечно-земных связей. Его исследованию посвящено необозримое число работ. Отметим здесь лишь одно обстоятельство: ряд Вольфа был не только объектом исследованй, но и служил своеобразным фундаментом для построения базовых понятий анализа временных рядов – периодограммы (Шуcmep, 1906) и модели авторегрессии (Юл, 1928).

Напомним, что числа Вольфа вычисляются по формуле

$$W = k (10 g + f),$$
 (1)

где *g* – число групп пятен, видимых на диске Солнца, *f* – общее число пятен, как отдельных, так и принадлежащих группам, *k* – коэффициент для приведения результатов наблюдений в единую систему. С физической точки зрения числа Вольфа не являются исчерпывающей характеристикой солнечной активности. Тем не менее, только они дают нам астрономическую информацию о вариациях солнечной активности в прошлом, поскольку обработка зарисовок диска Солнца позволила составить равномерный ряд среднегодовых чисел Вольфа, начиная с 1700 г., а отдельные значения этого ряда имеются вплоть до начала 17 столетия, когда солнечные пятна были открыты Галилеем.

2 ВЕЙВЛЕТЫ

Обычно для для построения оценок спектра мощности (периодограмм) временных рядов используют пробразования Фурье. Преобразования Фурье обладают замечательной способностью фокусировать в точку "размазанную"по времени информацию о периодичности функции при переходе из временной области в частотную. Достигается это за счет того, что ядро преобразования Фурье не локализовано во времени, но имеет предельную локализацию в частотной области. Это обстоятельство и делает преобразование Фурье прекрасным инструментом для изучения процессов, характеристики которых не меняются со временем.

В противоположность этому вейвлет-анализ основан на использовании локализованных во времени ядер преобразования, размеры которых согласованы с масштабом изучаемых компонентов ряда. Основная идея вейвлет-преобразования отвечает специфике многих временных рядов, демонстрирующих эволюцию во времени своих основных характеристик – среднего значения, дисперсии, периодов, амплитуд и фаз гармонических компонентов. Подавляющее число процессов, изучаемых в астрономии, обладают такими свойствами: блеск квазаров, солнечная активность, неравномерность вращения Земли – вот далеко не полный перечень примеров.

Наш анализ чисел Вольфа основан на использовании интегрального вейвлет-преобразования, которое для функции $f(t) \in L^2(R)$ задается следующим образом (Гроссман и Морле, 1984; Добечи, 1992):

$$W(a,b) = \frac{1}{|a|^{1/2}} \int_{-\infty}^{\infty} f(t)\psi^*\left(\frac{t-b}{a}\right)dt,$$
(2)

где $a, b \in R, a \neq 0$.

Входящая в выражение (2) функция $\psi(t)$ называется вейвлетом (анализирующим, базисным или материнским вейвлетом). Заметим, что в формуле (2) символом * обозначена процедура комплексного сопряжения. Параметра определяет размер вейвлета и называется масштабом (scale). Параметр b задает временную локализацию вейвлета и называется сдвигом (shift).

В нашей работе использовался вейвлет Морле

$$\psi(t) = e^{-t^2/2} e^{i\,2\pi t},\tag{3}$$

т.е. плоская волна, модулированная гауссианой. Этот вейвлет дает результаты, наиболее согласованные с терминами Фурье-анализа. В частности, понятие масштаба полностью соответствует периоду гармонических компонентов. Заметим, что зависимость вейвлета от масштаба, следующая из определения вейвлет-преобразования, в случае вейвлета Морле (3) приводит к тому, что для каждого значения сдвига b в поле зрения преобразования находится участок ряда длиной $P\sqrt{2}$, где P – период гармонического компонента.

Введенным выше определениям интегрального вейвлет-преобразования, нельзя воспользоваться на практике, поскольку при обработке результатов измерений основными объектами преобразования являются не функции, заданные на всей оси времени, а временные ряды, длина которых всегда конечна. По этой причине вместо теоретических понятий вводятся их практические аналоги (оценки).

Будем считать, что временной ряд задан значениями функции, следующими друг за другом с постоянным шагом Δt :

$$f_k = f(t_k), \quad t_k = \Delta t \ k, \quad k = 0, 1, ..., N - 1.$$
 (4)

Для оценки вейвлет-преобразования этой последовательности воспользуемся следующим выражением:

$$W_A(a,b) = \frac{1}{n(a,b)} \sum_{k=0}^{N-1} f_k \psi^* \left(\frac{t_k - b}{a}\right),$$
(5)

где

$$n(a,b) = \sum_{k=0}^{N-1} e^{-\frac{1}{2} \left(\frac{t_k - b}{a}\right)^2},$$
(6)

Следуя $\Phi ocmepy$ (1996), будем называть оценку (5) амплитудной вейвлет-функцией. Эта функция вычисляется для дискретных значений аргументов a_i и b_j , $i = 0, ...N_a - 1; j = 0, ...N_b - 1$ (конкретные способы дискретизации параметров a и b могут быть различными).

Используя (5), введем оценку локального спектра энергии

$$S(a_i, b_j) = |W_A(a_i, b_j)|^2.$$
(7)

Эту функцию обычно называют *скалограммой* (scalogram), подчеркивая тем самым ее способность описывать распределение энергии по масштабам. Поскольку это распределение локализовано во времени с помощью параметра сдвига *b*, уместно называть (7) *локальной скалограммой*, однако такой термин не нашел широкого распространения.

Очевидно, что на основе скалограммы $S(a_i, b_j)$ можно ввести также и оценку глобального спектра энергии

$$G(a_i) = \frac{1}{N^*} \sum_{j} S(a_i, b_j),$$
(8)

где N^* – число точек, по которому осуществляется осреднение. По предложению *Скаргла (1997)* функцию (8) называют *скейлограммой (scalegram)*. Скейлограмма является прямым аналогом сглаженной периодограммы в Фурье-анализе.

Бывает так, что широкие контуры линий гармонических компонентов в скалограмме мешают проследить за эволюцией их частот во времени. Чтобы отсечь влияние контуров, можно выделить те точки скалограммы, в которых она имеет максимумы по переменным *a* и *b*:

$$S_{c}(a_{i}, b_{j}) = \begin{cases} S_{ij}, & \text{если } S_{i-1,j} < S_{ij} > S_{i+1,j} \\ & \text{или } S_{i,j-1} < S_{ij} > S_{i,j+1}, \\ 0, & \text{в противном случае.} \end{cases}$$
(9)

В этой формуле использовано обозначение $S_{ij} \equiv S(a_i, b_j)$. Функцию (9) мы будем называть *скелетоном*.

В случае синусоидального сигнала точки скелетона располагаются вдоль линий, идущих параллельно оси времени. Если в данных имеются гармонические или квазигармонические компоненты, то топографическая карта скелетона будет состоять из линий, ориентированных вдоль оси b. В случае шумового компонента линии скелетона вытягиваются в перпендикулярном направлении, т. е. параллельно оси a. Если в данных присутствуют и гармонические компоненты, и шум, то карта скелетона позволяет увидеть их раздельно.

3 РЕЗУЛЬТАТЫ

Не претендуя на исчерпывающий анализ физики солнечной активности, используем ряд чисел Вольфа для демонстрации возможностей вейвлет-преобразования.

На рис. 1,а показаны среднегодовые значения чисел Вольфа на промежутке от 1700 до 1999 г. Изучение этого ряда во временной области показывает много характерных особенностей. Во-первых, четко видна повторяемость максимумов и минимумов с характерным периодом приблизительно 11 лет (более тонкое изучение показывает, что расстояния между максимумами не остаются постоянными, а претерпевают небольшие изменения во времени). Вовторых, легко усматривается различие максимальных значений ряда (так, наибольшее значение приходится на 1957 г.). Все это говорит о том, что характеристики ряда меняются во времени и что Фурье-анализ не является адекватным методом для его исследования. Действительно, в периодограмме Шустера (рис. 1,b) нашего ряда, освобожденного от линейного тренда

$$tr(t) = (33.9 \pm 2.3) + (0.105 \pm 0.013)(t - 1700), \tag{10}$$

мы видим две значимые концентрации мощности, приходящиеся на частоты 0.00-0.02 и 0.08-0.10 цикла в год. В первой полосе есть пики, соответствующие периодам 204.5; 102.3 и 56.8 года. Во второй полосе имеются четыре максимума с периодами 12.04; 11.00; 10.55 и 10.03 года. В обеих полосах частот периодограмма сильно изрезана. Изрезанность периодограммы свидетельствует о значительной стохастичности, присущей процессу солнечной активности. В подобных случаях в спектральном анализе прибегают к сглаживанию периодограммы. Результаты сглаживания с помощью окна Тьюки при параметрах сглаживания $N^* = 150$ и a = 0.25 показаны штриховой линией на рис. 1,b. Мы видим, что и периодограмма Шустера, и ее сглаженная модификация говорят о том, что ряд солнечной активности состоит из трех квазипериодических компонентов с периодами приблизительно 100, 57 и 11 лет, – и это все, что Фурье-анализ может дать при исследовании этого ряда.

В противоположность этому вейвлет-анализ позволяет увидеть не только концентрации мощности на известных масштабах, но и проследить за их развитием во времени. На рис. 2,а представлена скалограмма, вычисленная с вейвлетом Морле в диапазоне масштабов от 5 до 120 лет. Здесь имеются три спектральные линии, соответствующие масштабам (периодам) 100, 54 и 11 годам, однако, в отличие от Фурье-спектра, мы видим, что и периоды, и амплитуды этих линий изменяются во времени. На рис.2, в показан только участок скалограммы в диапазоне масштабов от 5 до 15 лет. Здесь эти изменения видны особенно ясно. Характерной особенностью является резкое падение интенсивности пятнообразования с 1800 по 1830 г., сопровождающееся одновременным изменением периода. Еще более четко изменение периода во времени показано на рис. 2, с, где приводится не контуры спектральных линий, а только линии скелетона. Мы видим, что основной, 11-летний цикл Солнца, имеющий вид извилистой линии, идущей вдоль оси времени, пересекается шумовыми полосами, вытянутыми в перпендикулярном направлении. Этот факт говорит о том, что пятнообразовательная деятельность Солнца характеризуется не только периодическим механизмом с переменными периодом и амплитудой, но и аддитивными стохастическими компонентами типа белого шума.

В заключение отметим, что представление ряда чисел Вольфа на промежутке 1700-1999 (без линейного тренда) с помощью авторегрессионного процесса второго порядка имеет следующий вид:

$$x_k = 1.372 x_{k-1} - 0.693 x_{k-2} + 16.55 \xi_k, \quad k = 2, 3, \dots N - 1, \tag{11}$$

где $x_0 = x_1 = 0$, – начальные значения; $\xi_k, k = 0, 1, \dots, N-1$, – выборка из случайной величины с нулевым математическим ожиданием и единичной дисперсией, распределенной по нормальному закону.

Коэффициенты формулы (11) были вычислены нами методом максимальной энтропии. Они близки к значениям, полученным другими авторами по различным реализациям (см. Теребиж, 1992). Нами был проведен вейвлет-анализ модельных рядов типа (11). Основой результат этого анализа можно сформулировать следующим образом: реальный ряд солнечной активности является более детерминированным, чем реализации его AR-модели, поскольку скалограммы последовательностей (11) не показывают четко выраженных синусоидальных деталей (подобных 11-летней линии), ориентированных вдоль оси времени. Рис.3, на котором показаны результаты вейвлет-анализа одной из реализаций процесса (11), демонстрирует этот вывод.

4 Литература

Гроссман и Морле, 1984. – Grossman A., Morlet J. Decomposition of Hardy functions into square integrable wavelets of constant shape // SIAM J. Math. P.723-736.

Добечи, 1992. – Daubechies I. Ten lectures on wavelets. Society for industrial and applied mathematics. Philadelphia, Pennsylvania, 1992.

Ckapen, 1997. – Scargle J.D. Wavelet and Other Multi-resolution Methods for Time Series Analysis. Statistical Challenges in Modern Astronomy II /Ed. G.J.Babu and E.D.Feigelson. P. 333-347. N.Y.: Springer-Verlag.

Теребиж В.Ю., 1992. Анализ временных рядов в астрофизике. М.: Наука.

 Φ ocmep, 1996. – Foster G. Wavelets for period analysis of unevenly sampled time series // Astron. J. Vol. 112. N4. P. 1709-1729.

Шycmep, 1906. – Schuster A. On the Periodicities of Sun Spots // Trans. R. Soc. London. Ser A. Vol. 206. P. 69-100.

1928. – Yule J.U. On a Method of Investigation Periodicities in Disturbed Series with Special Reference to Wolfer's Sunspot Numbers. // Phylos. Trans. R. Soc. London. Ser. A. Vol. 226. P.267-298.

Рис.1. Анализ чисел Вольфа: а -- ряд среднегодовых чисел Вольфа 1700--1999; b -- периодограмма Шустера (сплошная линия), сглаженная периодограмма (штриховая линия), 99-процентный порог обнаружения сигнала в шумах (штрих-пунктирная линия); с -- скейлограмма в диапазоне 5-120 лет; d -- скейлограмма в диапазоне 5-15 лет.}

Рис. 2. Вейвлет-анализ ряда чисел Вольфа:

а -- скелетон в диапазоне периодов (масштабов) 5-120 лет; b -- скалограмма в диапазоне периодов 5-15 лет; c -- скелетон в диапазоне периодов 5-15 лет.}

Рис. 3. Вейвлет-анализ авторегрессионного процесса второго порядка. a – исходный ряд; b – скалограмма в диапазоне периодов 5-15 лет; c – скелетон скалограммы в том же диапазоне периодов.